Controlling and measuring quantum transport of heat in trapped-ion crystals.
نویسندگان
چکیده
Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.
منابع مشابه
Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملTurbulent transport of trapped electron modes in collisionless magnetized plasma
Submitted for the APR09 Meeting of The American Physical Society Turbulent transport of trapped electron modes in collisionless magnetized plasma YONG XIAO, University of California, Irvine — A prominent candidate for the electron heat transport in high temperature toroidal plasmas is collisionless trapped electron mode (CTEM) turbulence. Our large scale simulations of CTEM turbulence using gyr...
متن کاملControlling fast transport of cold trapped ions.
We realize fast transport of ions in a segmented microstructured Paul trap. The ion is shuttled over a distance of more than 10(4) times its ground state wave function size during only five motional cycles of the trap (280 μm in 3.6 μs). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10±0.01 motional quanta. In addition, we d...
متن کاملOn the transport of atomic ions in linear and multidimensional ion trap arrays
Trapped atomic ions have become one of the most promising architectures for a quantum computer, and current effort is now devoted to the transport of trapped ions through complex segmented ion trap structures in order to scale up to much larger numbers of trapped ion qubits. This paper covers several important issues relevant to ion transport in any type of complex multidimensional rf (Paul) io...
متن کاملMoving Traps Offer Fast Delivery of Cold Ions
Quantum physics experiments with trapped atoms or ions often require that the particles occupy the lowest quantum state of the trapping potential. This presents a challenge when the particles need to be moved to a different location in order to perform, for example, a quantum computation. Previous experiments succeeded in transporting trapped ions, albeit slowly, by modifying the trapping poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 4 شماره
صفحات -
تاریخ انتشار 2013